Missouri's Water Quality Review Process for NPDES Permits

September 5, 2006

Department of Natural Resources
Water Protection Program
Water Pollution Control Branch

Water Quality Based Effluent Limits & the Clean Water Law

"...to restore and maintain the chemical, physical, and biological integrity of the Nation's waters." [33 U.S.C. § 1251 (a)]

- Objective of maintaining water quality standards through appropriately established permit conditions
- Water Quality Review process is used to document appropriate effluent limits and monitoring requirements
- The review process also determines whether technology or water quality based effluent limits are necessary to restore and maintain water quality.

Water Quality Review Elements

Site Specific Information

Mixing Considerations

Effluent Characteristics & Permit Conditions

Water Quality Review Elements

- Site Specific Information
 - Facility
 - Receiving Waterbody
- Mixing Considerations
- Effluent Characteristics & Permit Conditions

Site Specific Information

Facility

Anytown WWTF Little Muddy Creek

Receiving Waterbody

Facility Information - General

- Facility Name
- Permit Number (for existing facilities)
- Facility Type/Description
- Legal Description
- Latitude/Longitude
- Water Quality History

Facility Information - Outfall

- Outfall Number
- Design Flow (gpd or MGD)
- Treatment Type
 - Primary
 - Secondary
 - Advanced
 - Stormwater
- Receiving Waterbody

Receiving Waterbody Information

- Waterbody Name
- Classification
 - Lakes (L1, L2, and L3)
 - Streams (P, P1, and C)
 - Wetlands (W)
 - Unclassified
- ◆ Low flow conditions (7Q10, 1Q10, 30Q10)
- Designated Beneficial Uses
 - IRR, LWW, AQL, CLF, CDF, WBC, SCR, DWS, IND
 - General Criteria 10 CSR 20-7.031(3)
- Other Characteristics

Low Flow Conditions (7Q10, 1Q10, 30Q10, etc)

- DIRECT Obtain low flow conditions through a statistical analysis of stream flow data
 - USGS stream flow data
 - USGS SWSTAT software
- INDIRECT Watershed Area Ratio
 - Low flow statistics from similar watershed
 - Use ratio of watershed areas to obtain estimate

Resource Requirements

- DEFAULT Waterbody Classification
 - Class P streams = 0.1 cfs
 - Class C and unclassified streams = 0.0 cfs

Water Quality Review Elements

Site Specific Information

- Mixing Considerations
 - Mixing Zone
 - Zone of Initial Dilution

Effluent Characteristics & Permit Conditions

Mixing Considerations

Honey Creek (WBID: 3245)
McDonald County

Mixing Zones

Mixing zones are areas of limited size near a facility outfall where numeric water quality criteria may be exceeded.

- General Criteria found in 10 CSR 20-7.031(3) must be met
- Zones of passage must be provided to avoid lethality to passing organisms
- Limited in size (volume, area, length) so that designated beneficial uses and aquatic communities are not adversely impacted

Regulatory Mixing Zones

MZ = Mixing Zone

ZID = Zone of Initial Dilution

Numeric Water Quality Criteria

Chronic Criteria

- Apply to classified waters
- Apply at the edge of the mixing zone
- Effects evident after 4 or 30 days of exposure

Acute Criteria

- Apply to classified and unclassified waters
- Apply at the edge of the zone of initial dilution
- Apply at all times in unclassified waters
- Effects evident after 1 hour of exposure

Water Quality Review Elements

- Site Specific Information
- Mixing Considerations
- Effluent Characteristics & Permit Conditions
 - Effluent Limitations
 - Monitoring Requirements
- Derivation and Discussion

Effluent Characteristics & Permit Conditions

Anytown WWTF - Outfall #001 Calaveras County

Effluent Characteristics & Permit Conditions

- Sources of information for effluent characteristics
 - Permit application
 - Existing permit
 - File and effluent data review
- Determine effluent limitations for technology based "conventional" pollutants (BOD, TSS, pH, bacteria, and Oil & Grease)
- Determine reasonable potential for "non-conventional" and "toxic" pollutants

Water Quality Based Effluent Limits (WQBELs)

- Where reasonable potential exists, establish an effluent limitation; otherwise, establish a monitoring only requirement
- Consider all applicable designated uses and criteria when calculating wasteload allocations (WLA)
 - Chronic vs. Acute at appropriate dilution flows
 - AQL vs. DWS criteria at appropriate dilution flows

Water Quality Criteria

Magnitude

Duration

Frequency

Effluent Limitation

Magnitude

Averaging Period

Flow x Concentration x CF = Load

Flow (Q) - gallons/day, cubic feet/second Concentration (C) - milligrams/liter, micrograms/liter

Load
$$X + Load Y = Load Z$$

 $(Q_x \times C_x) + (Q_y \times C_y) = (Q_x + Q_y) \times C$

Flow (Q) - gallons/day, cubic feet/second Concentration (C) - milligrams/liter, micrograms/liter

$$Q_x C_x + Q_y C_y = (Q_x + Q_y) C$$

Where: $Q_x = WWTF$ effluent flow

 $C_x = WWTF$ wasteload allocation

 Q_v = Upstream flow available for mixing

 C_v = Existing water quality of receiving water

C = Water Quality Criterion

Where: $Q_x = WWTF$ effluent flow = 1.55 ft³/sec

 $C_x = WWTF$ wasteload allocation = ??? mg/L

 $Q_v = Upstream flow available for mixing = 0.0 ft^3/sec$

 $C_v = Existing water quality of receiving water = 0.01 mg/L$

C = Water Quality Criterion = 1.5 mg/L

WQBEL Calculation - Example (Part 1)

$$Q_x C_x + Q_y C_y = (Q_x + Q_y) C$$

 $(1.55 \text{ cfs x C}_x) + (0.0 \text{ cfs x 0.01 mg/L}) = (1.55 \text{ cfs + 0.0 cfs}) 1.5 \text{ mg/L}$

 $(1.55 \text{ cfs x C}_x) = (1.55 \text{ cfs} + 0.0 \text{ cfs}) 1.5 \text{ mg/L} - (0.0 \text{ cfs x 0.01 mg/L})$

 $(1.55 \text{ cfs x C}_x) = (1.55 \text{ cfs} + 0.0 \text{ cfs}) 1.5 \text{ mg/L}$

 $C_x = (2.325 \text{ cfs*mg/L}) / 1.55 \text{ cfs} = 1.5 \text{ mg/L}$

 $C_x = WLA = 1.5 \text{ mg/L}$

WQBEL Calculation - Example (Part 2)

$$C_x = WLA = 1.5 \text{ mg/L}$$

WLA converted into a Long Term Average (LTA) effluent concentration that will meet the criteria design characteristics

LTA = WLA x Factor

(CV = 0.6, 99th percentile, n = 30)

 $LTA = 1.5 \text{ mg/L} \times 0.780 = 1.2 \text{ mg/L}$

WQBEL Calculation - Example (Part 3)

Long Term Average (LTA) = 1.2 mg/L

Maximum Daily and Average Monthly effluent limitations are then calculated from the most protective LTA concentration

Maximum Daily Limit (MDL)
Average Monthly Limit (AML)

 $MDL = LTA \times Factor = 1.2 \text{ mg/L} \times 3.11 = 3.7 \text{ mg/L}$

 $AML = LTA \times Factor = 1.2 \text{ mg/L} \times 1.55 = 1.9 \text{ mg/L}$

WQBEL Calculation - Example (Final)

$$Q_x C_x + Q_y C_y = (Q_x + Q_y) C$$

Maximum Daily Limit = 3.7 mg/L (31 lbs/day) Average Monthly Limit = 1.9 mg/L (16 lbs/day)

"Technical Support Document for Water Quality-based Toxics Control" EPA/505/2-90-001

Monitoring Requirements

Monitoring requirements are necessary to determine concentrations of chemicals of concern, validate model assumptions, and determine compliance with water quality standards

Effluent Monitoring

- Minimum requirements based on flow in 10 CSR 20-7.015
- Effluent data used to determine reasonable potential
- Whole Effluent Toxicity (WET) Testing

Instream Monitoring

- Monitoring location can be upstream, downstream, or both
- Minimum frequency determined by data needs and BPJ

Water Quality Review Elements

Site Specific Information

Mixing Considerations

Effluent Characteristics & Permit Conditions

		Temperature (°C)															
pН	0-7	8	9	10	11	12	13	14	15	16	18	20	22	24	26	28	30
6.5	10.8	10.1	9.5	8.9	8.3	7.8	7.3	6.8	6.4	6.0	5.3	4.6	4.1	3.6	3.1	2.8	2.4
6.6	10.7	9.9	9.3	8.7	8.2	7.7	7.2	6.7	6.3	5.9	5.2	4.6	4.0	3.5	3.1	2.7	2.4
6.7	10.5	9.8	9.2	8.6	8.0	7.5	7.1	6.6	6.2	5.8	5.1	4.5	3.9	3.5	3.0	2.7	2.3
6.8	10.2	9.5	8.9	8.4	7.9	7.4	6.9	6.5	6.1	5.7	5.0	4.4	3.8	3.4	3.0	2.6	2.3
6.9	9.9	9.3	8.7	8.1	7.6	7.2	6.7	6.3	5.9	5.5	4.8	4.3	3.7	3.3	2.9	2.5	2.2
7.0	9.6	9.0	8.4	7.9	7.4	6.9	6.5	6.1	5.7	5.3	4.7	4.1	3.6	3.2	2.8	2.4	2.1
7.1	9.2	8.6	8.0	7.5	7.1	6.6	6.2	5.8	5.4	5.1	4.5	3.9	3.5	3.0	2.7	2.3	2.0
7.2	8.7	8.2	7.6	7.2	6.7	6.3	5.9	5.5	5.2	4.9	4.3	3.7	3.3	2.9	2.5	2.2	1.9
7.3	8.2	7.7	7.2	6.7	6.3	5.9	5.6	5.2	4.9	4.6	4.0	3.5	3.1	2.7	2.4	2.1	1.8
7.4	7.6	7.2	6.7	6.3	5.9	5.5	5.2	4.8	4.5	4.3	3.7	3.3	2.9	2.5	2.2	1.9	1.7
7.5	7.0	6.6	6.2	5.8	5.4	5.1	4.8	4.5	4.2	3.9	3.4	3.0	2.6	2.3	2.0	1.8	1.6
7.6	6.4	6.0	5.6	5.3	5.0	4.6	4.3	4.1	3.8	3.6	3.1	2.7	2.4	2.1	1.9	1.6	1.4
7.7	5.8	5.4	5.1	4.7	4.0	4.2	3.9	3.7	3.4	3.2	2.8	2.5	2.2	1.9	1.7	1.5	1.3
7.8	5.1	4.8	4.5	4.2	4.4	3.7	3.5	3.2	3.0	2.8	2.5	2.2	1.9	1.7	1.5	1.3	1.1
7.9	4.5	4.2	3.9	3.7	3.5	3.2	3.1	2.8	2.7	2.5	2.2	1.9	1.7	1.5	1.3	1.1	1.0
8.0	3.9	3.7	3.4	3.2	3.0	2.8	2.6	2.5	2.3	2.2	1.9	1.7	1.5	1.3	1.1	1.0	0.8
8.1	3.4	3.1	2.9	2.8	2.6	2.4	2.3	2.1	2.0	1.9	1.6	1.4	1.2	1.1	1.0	0.8	0.7
8.2	2.9	2.7	2.5	2.4	2.2	2.1	1.9	1.8	1.7	1.6	1.4	1.2	1,1	0.9	0.8	0.7	0.6
8.3	2.4	2.3	2.1	2.0	1.9	1.7	1.6	1.5	1.4	1.3	1.2	1.0	0.9	0.8	0.7	0.6	0.5
8.4	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.7	0.7	0.6	0.5	0.4
8.5	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1	1.0	0.9	0.8	0.7	0.6	0.5	0.5	0.4	0.4
8.6	1.4	1.4	1.3	1.2	1.1	1.0	1.0	0.9	0.8	0.8	0.7	0.6	0.5	0.4	0.4	0.3	0.3
8.7	1.2	1.1	1.1	1.0	0.9	0.9	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.4	0.3	0.3	0.2
8.8	1.0	1.0	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.6	0.5	0.4	0.4	0.3	0.3	0.2	0.2
8.9	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.3	0.3	0.2	0.2	0.2	0.2
9.0	0.7	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.1

$$Q_xC_x + Q_yC_y = (Q_x + Q_y)C$$

- Rationale for effluent limitations and monitoring requirements and how they were derived
- Includes all criteria and calculations used, low flow statistics, and water quality model inputs/outputs
- Caveats and disclaimers

Questions?

